Limits — problems only

brought to you by sciency.tech

last updated: February 13, 2019

Summary: This document contains some of the most common limits problems for you to review! Feel free to jump around or start from the beginning! Visit https://sciency.tech for the solutions and other problem-and-solution guides!

Contents

1	How to read limits out loud	2
2	Basic limit problems	3
3	One-sided limits	4
4	Limit laws	5
5	Harder limit problems	6
6	l'Hôpital's rule	7

1 How to read limits out loud

- 1. How do you read f(x)?
- 2. How do you read $\lim_{x\to a} f(x) = L$?
- 3. How do you read $\lim_{x\to a^-} f(x)$?
- 4. How do you read $\lim_{x\to a^+} f(x)$?

2 Basic limit problems

- 1. $\lim_{x \to 3} x = ?$
- 2. $\lim_{x \to a} (x^2 + 7) = ?$
- $3. \lim_{x \to \pi} \cos\left(\frac{x}{2}\right) = ?$
- 4. $\lim_{x \to \infty} e^{-x} = ?$
- 5. $\lim_{x \to a} \frac{x-3}{x^2+7} = ?$
- $6. \lim_{x \to \pi} x \cos x = ?$

3 One-sided limits

1. Let

$$f(x) = \begin{cases} x + 2, & \text{if } x < 0 \\ 3x - 7, & \text{if } x \ge 0 \end{cases},$$

then

$$\lim_{x \to 0^+} f(x) = ?$$

2. Let

$$f(x) = \begin{cases} x + 2, & \text{if } x < 0\\ 3x - 7, & \text{if } x \ge 0 \end{cases}$$

then

$$\lim_{x \to 0^-} f(x) = ?$$

3. Let

$$f(x) = \begin{cases} x + 2, & \text{if } x < 0 \\ 3x - 7, & \text{if } x \ge 0 \end{cases},$$

then

$$\lim_{x \to 0} f(x) = ?$$

4 Limit laws

- 1. $\lim_{x \to a} (f(x) + g(x)) = ?$
- 2. $\lim_{x \to a} f(x) g(x) = ?$
- $3. \lim_{x \to a} \frac{f(x)}{g(x)} = ?$
- $4. \lim_{x \to a} f(g(x)) = ?$
- 5. $\lim_{x \to a} 17 = ?$
- 6. $\lim_{x \to a} (f(x))^2 = ?$
- 7. $\lim_{x \to a} (f(x))^n = ?$
- 8. $\lim_{x \to a} (7x 2)^3 = ?$
- 9. $\lim_{x \to 0} \sqrt{x+4} = ?$
- 10. $\lim_{x \to -7} \sqrt{x+4} = ?$

5 Harder limit problems

1.
$$\lim_{x \to 5} \frac{x^2 - 25}{x - 5} = ?$$

$$2. \lim_{x \to \infty} \frac{1}{x} = ?$$

3.
$$\lim_{x \to \infty} \frac{1}{x^2} = ?$$

4. Let
$$a_n = 2 + 1/n$$
. Then $\lim_{n \to \infty} a_n = ?$

5.
$$\lim_{x \to 0} \frac{\sqrt{x^2 + 49} - 7}{x^2} = ?$$

6.
$$\lim_{x \to 5} \frac{\sqrt{x^2 + 24} - 7}{x^2 - 25} = ?$$

7.
$$\lim_{x\to\infty} \frac{\sqrt{4x^4+24x-7}}{x^2-25}=?$$
 (Try calculating this limit **without** using l'Hôpital's rule.)

8.
$$\lim_{x \to -\infty} \frac{5x^3 + 4x + 7}{25 - 2x^3} = ?$$

(Try calculating this limit without using l'Hôpital's rule.)

6 l'Hôpital's rule

- 1. What is l'Hôpital's rule?
- $2. \lim_{x \to 0} \frac{\sin x}{x} = ?$
- 3. $\lim_{x \to -3} \frac{(x+3)^3}{x^2+9} = ?$
- 4. $\lim_{x \to \infty} \frac{e^x}{x^2 + 4} = ?$